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Some flames and other kinds of interface appear to have normal propagation speeds
that depend non-monotonically on curvature. The gradient of this dependence deter-
mines whether disturbances about the interface grow antidiffusively or decay diffu-
sively and, in general, windows of antidiffusive behaviour may appear over finite
ranges of curvature, which carry the ‘wrong’ gradient of propagation speed. A num-
ber of peculiarities arise. For instance, an interface can, under appropriate conditions,
propagate subject to an antidiffusive instability for an infinite time but remain well-
posed with respect to initial conditions for all time! It is not well known, but is shown
here, that the linear diffusion equation ut = Duxx, with time-dependent coefficient
D(t), does not become ill-posed with respect to initial conditions when its diffu-
sion coefficient becomes negative, but when the integral of the diffusion coefficient
with respect to time becomes negative. Structural well-posedness is examined and
is shown to depend on the spectrum of any ‘noise’ that may affect the propagation
of the interface. Steadily propagating solutions are investigated; among them solu-
tions can be identified that appear to involve a ‘phase separation’ in curvature space,
on arbitrarily fine scales, between different solutions of fixed form. From a broader
modelling perspective, antidiffusively unstable behaviour needs to be regularized in
some way. Regularization would also provide a lower limit to the appearance of fine
structure. The Kuramoto–Sivashinsky equation suggests a regularized model, which
effectively adds a normal-propagation nonlinearity to the Cahn–Hilliard equation.
This reinforces the notion that non-monotonicity in a speed–curvature relationship
may be associated with ‘phase separation’ in curvature space. Understanding bet-
ter the nature of this association in the presence of normal propagation, and any
other features of the dynamics of the interface, requires further (numerical as well
as analytical) investigation.
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1. Introduction

Differences between the diffusivities of heat and a lean reactant are known to either
stabilize or destabilize flames, depending on the Lewis number of the deficient reac-
tant. In this way, the shape of a lean hydrogen flame is found to develop an antidiffu-
sive instability, which can be identified with the negative Markstein length L found
for such flames. L is defined such that the laminar flame speed V depends linearly on
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mean curvature κ in the manner V ≈ V0(1+κL), at least for small curvatures (Mark-
stein 1951). In its linearized limit, a nearly flat upwardly propagating flame satisfying
this law for flame speed would be described by the equation yt/V0 ≈ 1+Lyxx, which
is clearly antidiffusive in character when L is negative. Such an equation has the
property that arbitrarily small changes in initial conditions can lead to arbitrarily
large and rapid changes in its solution arbitrarily quickly, so being ill-posed with
respect to general initial conditions. Lean reactants that are heavy enough do not
develop such an instability and are found to possess a positive Markstein length,
diffusively stabilizing the shape of a propagating flame.

Recently, Kerr & Dold (2000) examined mixtures near stoichiometry and found
a broader class of curvature dependence in the propagation speed, this dependence
reducing to that of lean reactants as departure from stoichiometry is increased. For
lean reactants with non-unit Lewis number, it is mainly the dependence of flame
temperature on curvature, and, of course, the strong exponential sensitivity of reac-
tion rate to temperature that determines the relationship between flame speed and
curvature. Because the flame temperature is found to depend monotonically on cur-
vature, so too is the flame speed. However, near stoichiometry there is an additional
algebraic factor that affects the reaction rate, namely the residual concentration of
the locally rich reactant in the flame’s reaction zone. This also depends on curvature
when the Lewis numbers are not unity. Kerr & Dold (2000) show that combinations
of Lewis numbers can be found for which non-monotonic curvature dependence arises
for the flame speed. In particular, this happens when the algebraic dependence dom-
inates at weaker curvatures, while an opposing exponential dependence dominates at
larger curvatures. This effect was not present in the analysis of Aldushin et al . (1995)
in their stability analysis of nearly stoichiometric flames because they admitted only
temperature dependence, through adopting zero-order concentration dependence in
their model for reaction rate.

These studies employed a constant density, or small heat release approximation,
through which fluid-dynamical aspects of the problem are eliminated. In real flames,
thermal expansion is certainly very important, but little is known to date about
the implications of non-monotonic curvature dependence in the propagation of an
interface, whether or not other influences are present. It is therefore worthwhile
studying its effects in isolation before attempting to combine it with fluid-dynamical
influences. In some approximations, shocks and reactive shocks are believed to prop-
agate at curvature-dependent speeds (Stewart & Bdzil 1988). Chemical systems,
or models of chemical systems, may well exist in which that dependence becomes
non-monotonic. Other physical systems, such as the movement of meandering rivers
(Seminara & Tubino 1992), exhibit curvature-dependent propagation which may be
non-monotonic, and therefore the present discussion has a much wider potential
applicability.

Non-monotonic dependence of propagation speed on curvature poses some chal-
lenging mathematical problems, whether this is applied to flames or to any other
form of interface. The literature based on movement by mean curvature misses these
aspects by generally considering a stabilizing dependence on mean curvature. Sethian
(1985) examined an interface in two dimensions, finding an amazing degree of sim-
plicity in the evolution of the total variation (integral of the modulus of curvature)
of an interface propagating with any form of curvature-dependent speed, as will be
described in more detail later. His most striking result relies on assuming continuity
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Figure 1. (a) A propagating interface illustrating the sign convention in the definition of curva-
ture κ and a sample movement of the interface from the solid line to the dashed line over some
time-interval. (b) A possible speed–curvature relationship.

of curvature. On closer examination, this assumption is unreliable, in the sense of
being ill-posed for wide classes of non-monotonic speed–curvature relationships; it
can be violated arbitrarily quickly as a result of arbitrarily small changes in initial
conditions, as we shall see.

On the other hand, non-monotonicity has surprising features that reveal little-
known properties of diffusion equations in which the coefficient of diffusion may
change sign. Astonishingly, perhaps, in the exact (or noise-free) formulation of the
problem with non-monotonic curvature dependence, some interfaces can propagate
subject to an antidiffusive linear instability for an infinite length of time and still
remain well-posed with respect to initial conditions for all time! Structural ill-posed-
ness (the effect of weak noise in the formulation) is another question that is explored
below. This part of the analysis is mostly based on linearization around circular
interfaces, which is sufficient and indeed central to revealing the principal features of
linear diffusivity and antidiffusivity in the dynamics. The discussion is centred mainly
on one form of non-monotonic speed–curvature law, although the lessons learned in
the analysis are easily generalized to much broader classes.

We also examine steadily propagating nonlinear solutions, of which there are broad
classes with piecewise continuous curvature. There appears to be something akin to
phase separation, in curvature space, of the interface in these solutions, in which the
phase separation may occur on arbitrarily fine scales. In general, to be uniformly
well-posed mathematically, antidiffusive models need to be supplemented by higher-
order regularizing terms, as for example in the Kuramoto–Sivashinsky equation. For
flames this would reflect the fact that a flame has a finite thickness, providing a lower
limit to the length-scale of possible unstably growing disturbances. Considering such
higher-order effects, in connection with the Kuramoto–Sivashinsky equation, leads to
a natural generalization of the Kuramoto–Sivashinsky equation in which both non-
monotonic curvature-dependent propagation and a fourth-order regularizing effect,
the diffusion of curvature, are included. This equation is also found to be a version
of the Cahn–Hilliard equation, extended through inclusion of nonlinearities arising
from normal propagation. Discussion of such higher-order effects is relegated to an
appendix in order to focus attention on the potential for regularization provided by
non-monotonicity in the speed–curvature law alone.
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2. Model

In two dimensions,† an interface may be parametrized in terms of arclength s and
time t by a vector-valued function of the form r = R(s, t) with tangent unit vector
ŝ = Rs and normal unit vector n̂ (chosen to point in the direction of propagation) as
illustrated in figure 1a. In order to be consistent with convention in the combustion-
theory literature we define curvature by κ = ŝs · n̂ = −n̂s · ŝ, which sets κ to be
negative when the interface is convex as viewed from the direction of propagation
(see figure 1a). If the interface propagates in the normal direction n̂ at the curvature-
dependent speed V (κ), then the evolution of the interface is determined by

Rt · n̂ = V (κ), (2.1)

starting with any suitable continuous initial shape of the interface R(s, 0) = R0(s).
In this paper we will mostly consider a speed–curvature law of the form illustrated in
figure 1b, having V > 0 for all values of κ, one local maximum Vmax = V (−1/rmax)
and one local minimum Vmin = V (1/rmin) at a negative and a positive curvature
respectively, V decreasing as κ → −∞, and V increasing without bound (or at
least above the local maximum value) as κ → +∞. It is also worth identifying the
negative curvature −1/r0 at which the speed is the same as that for a flat interface,
V (−1/r0) = V (0).

This form of law is prompted by the analysis of Kerr & Dold, but many other forms
could be considered in exactly the same way as is done below. For the overall shape
of the law that we adopt, it is not necessary to provide a more exact formulation,
because many of the results obtained here are general enough to be extended readily
to wide classes of speed–curvature relationship.

An outwardly propagating circular interface has a negative curvature that de-
creases in magnitude (increases positively in value) over time, while an inwardly
propagating interface has a positive and increasing curvature. If the radius is r = a(t),
then the two cases satisfy

da
dt

= V (−1/a) =⇒ t =
∫ a

a0

da
V (−1/a)

(2.2)

and

da
dt

= −V (1/a) =⇒ t =
∫ a0

a

da
V (1/a)

, (2.3)

respectively, where a0 is the initial radius. The first formulation (2.2) includes the
latter if one considers inward propagation to correspond to a negative radius.

In polar coordinates, if the interface lies at r = a(t) + u(θ, t), then it satisfies the
equation

da/dt + ut

(1 + u2
θ/r

2)1/2 = ±V

(
± ruθθ − 2u2

θ − r2

r3(1 + u2
θ/r

2)3/2

)
, (2.4)

with the positive or negative signs being taken for outwardly or inwardly propagating
interfaces, respectively. From this it can be noted that the curvature (the argument

† Much of the analysis easily extends to three dimensions without revealing any major difference from
a simpler two-dimensional study, at least in linearized cases. Nonlinear solutions in three dimensions
involve more complexity but are conceptually a straightforward extension.
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of the function V ) linearizes in the manner κ = ∓1/a ± (u + uθθ)/a2 + O(u2) when
u is small.

3. Small deviations from a circular interface

Considering the deviation u from a perfectly circular outwardly propagating interface
to be small, the model (2.4) takes on the asymptotic form

ut =
V ′(−1/a)

a2 (uθθ + u) with
da
dt

= V (−1/a). (3.1)

If we were to consider inward propagation, the equation for u(θ, t) would be the same
apart from a change in sign from −1/a to 1/a, both representing none other than the
leading-order value of the curvature κ, while the equation for a(t) would change to its
form in equation (2.3). Alternatively, as mentioned before, we could simply take a to
be negative for inward propagation. In either case, the equation for u is, essentially,
a diffusion equation having a non-constant diffusion coefficient, κ2V ′(κ) to leading
order, whatever the sign of κ. Written in terms of arclength, either equation would
become ut = V ′(κ)(uss + κ2u) to leading order, with diffusion coefficient V ′(κ), but
it is sufficient for the present discussion to focus attention initially on equation (3.1).

(a) Well-posedness

The main feature of equation (3.1) is that the ‘diffusion coefficient’ can be negative,
namely wherever the function V (κ) has a negative gradient. Such a sign is normally
associated with a diffusion problem being ill-posed, but we should note that V ′(κ) is
not universally negative for the speed–curvature law we are considering. Indeed it is
only negative in a finite window of curvature space, namely −1/rmax < κ < 1/rmin,
and this has some significant consequences.

The transformation to a pseudo-time or ‘age’ variable τ(t), which we define as the
time-integral of the diffusion coefficient, allows equation (3.1) to be rewritten as

uτ = uθθ + u with τ =
∫ t

0
V ′(−1/a)

dt
a2 , (3.2)

which is a diffusion equation having a constant positive coefficient of precisely unity.
Such an equation is well-posed with respect to initial conditions for all positive values
of τ . Indeed since the interface must be continuous, u(θ, 0) is continuous and possesses
a Fourier representation

u(θ, 0) =
∞∑

k=−∞
Akeikθ

(with Ak = A∗
−k since u is real). Separation of variables therefore leads to a unique

solution,

u =
∞∑

k=−∞
e(1−k2)τAkeikθ, (3.3)

provided only that the sum converges. Clearly, it converges for all positive values of
τ , but to converge for any negative value of τ the coefficients Ak would need to decay
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in a Gaussian manner with wavenumber, such that |ek2|τ |Ak| would be bounded for
all wavenumbers and decay suitably rapidly as |k| → ∞. Tiny changes in initial
condition (for example, adding ε/kn+1 to Ak, for any small ε and n � 1, which
corresponds to introducing arbitrarily small discontinuities in only the nth arclength
derivative of the interface) can violate this requirement and render the sum divergent
at any negative pseudo-time, making the problem ill-posed for any ‘age’ τ(t) < 0.

To complete the solution (3.3) it remains only to evaluate τ . It turns out that this
can be done exactly in terms of a(t), since

τ =
∫ a

a0

V ′(−a−1)
V (−a−1)

da
a2 =

∫ −1/a

−1/a0

V ′(κ)
V (κ)

dκ = ln
V (−1/a)
V (−1/a0)

. (3.4)

Clearly, τ is positive as long as the propagation speed at radius a exceeds the initial
speed at radius a0. If the initial radius is small enough, less than r0 for the speed–
curvature law sketched in figure 1b, then this is true for all time; and so the problem
is then well-posed for all time in spite of the ‘diffusion coefficient’ being negative for
an unlimited time!

Inherent in this result is the following little-known theorem of diffusion or ‘heat’
equations (which the authors have not seen quoted before).

Theorem 3.1. The linear diffusion equation ut = Duxx, with time-dependent
coefficient D(t), becomes ill-posed with respect to initial conditions when the inte-
gral of the diffusion coefficient with respect to time becomes negative (which is not
necessarily when the diffusion coefficient itself becomes negative).

In fact, if D(t) starts off being positive, then by the time that D changes sign the
coefficients in the Fourier transform of the solution will have become Gaussian due to
the smoothing effect created while D was positive. This allows the solution to survive
an equivalent degree of negative diffusivity as discussed above. As equation (3.4)
shows, this can itself provide a remarkable and very simple regularizing effect for
propagating interfaces.

(b) The effect of ‘noise’

The results above apply if the interface propagates exactly according to the model
(2.1). In physically relevant situations small perturbations might well be induced at
any time, perhaps arising because of ‘noise’ or spatial non-uniformities in the medium
through which the interface moves. In order to examine their effect we can consider
the introduction of a non-homogeneous term to equation (3.1) in the manner

ut =
dτ
dt

(uθθ + u) + f with f(θ, t) =
∞∑

k=−∞
fk(t)eikθ. (3.5)

This equation has the particular integral

up(θ, t) =
∞∑

k=−∞
uk(t)eikθ with uk(t) = e(1−k2)τ(t)

∫ t

0
e(k2−1)τ(ζ)fk(ζ) dζ, (3.6)

which completes the solution of (3.5) when it is added to the homogeneous solution
in (3.3), provided only that the sums converge.
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When k is large, the kernel of the integral in (3.6) is dominated by behaviour of the
exponential near the maximum value of τ (where V ′(−1/a) changes sign). Taking
the behaviour of τ near its maximum to be quadratic in the manner

τ = τ0 − β(t − t0)2 + O(t−t0)3 having β = −V ′′(−r−1
max)

2r4
max

V (−r−1
max) > 0. (3.7)

Watson’s lemma leads to the asymptotic estimate for uk when t > t0 + O(k), as
|k| → ∞:

uk ∼ e(k2−1)(τ0−τ)αk

|k| with αk =
1√
β

∫ ∞

−∞
e−ν2

fk

(
t0 +

ν

|k|√β

)
dν. (3.8)

If fk(t) varies slowly on the fast time-scale ν = |k|β1/2(t − t0), when ν = O(1),
then, as |k| → ∞, αk ∼ (π/β)1/2f(t0). More generally, the constant αk picks out a
Gaussian-weighted average level of noise in the mode fk, in a narrow band around
the moment when dτ/dt, or V ′(−1/a), changes sign, and is relatively independent
of fk at other times.

As previously, the sum in (3.6) only converges for t > t0 if |ek2|τ0−τ |αk| is at
least bounded, which, in turn, requires the noise to decay in a Gaussian manner
with wavenumber. This may be a severe restriction in some cases if noise were to be
present and to have an algebraic spectrum, as in the inertial range of turbulence, for
example, or in numerical simulations where rounding and truncation errors would
always be present. In such cases, it seems that a strong structural instability in the
model (2.1) could take over arbitrarily quickly. In practice, any algebraic tail-off in a
noise spectrum should ultimately give way to Gaussian, or superexponential, decay
at small enough scales, such as below the Kolmogorov length in the case of fluid-
dynamical turbulence. This should limit the rapidity with which the effects of noise
would become significant.

4. Total variation

In examining what might happen for larger amplitude fully nonlinear evolutions it is
useful to recall the work of Sethian (1985, 1996), who obtained a remarkable result
concerning the evolution of the total variation C(t), defined as the integral of the
absolute value of curvature over the entire interface. That is,

C =
∫ L

0
|κ| ds, (4.1)

where L(t) is the total arclength of the interface. For any simple closed curve in
which κ does not change sign (therefore making it uniformly negative) the value of
C is exactly 2π. If κ does change sign, then C is larger than 2π. The evolution of C
is an indication of how the interface might be distorting or smoothing itself out as
it propagates.

Using the relations, ŝs = κn̂, n̂s = −κŝ and n̂t · n̂ = ŝt · ŝ = 0, the model (2.1)
can be differentiated to give

κt = Vss + κ2V + Rt · ŝκs = (Vs + κRt · ŝ)s. (4.2)
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Splitting the integral for C into integrals over intervals where κ is either positive or
negative, it takes the form

C =
N∑

n=1

Cn with Cn =
κ

|κ|
∫ sn+1

sn

κ ds, (4.3)

where sN+1 = s1 + L and κ has one sign only, represented by κ/|κ|, or is zero,
between successive values of sn. If we take curvature to be continuous, so that κ is
zero where it changes sign, then

dCn

dt
=

κ

|κ|
∫ sn+1

sn

κt ds

=
κ

|κ| [Vs + κRt · ŝ]sn+1
sn

= −V ′(0)|κs(sn+1, t) − κs(sn, t)|, (4.4)

the final part of which arises because of the sign restriction that κs must have when
entering or leaving any one interval. To obtain dC/dt, these derivatives must be
added and account taken of the appearance or disappearance of intervals through κ
changing sign locally. The latter possibility was not considered in Sethian’s (1985)
paper, but if κ is continuously differentiable, κs is zero when an interval appears or
disappears and this aspect makes no contribution to dC/dt.

It is now readily seen that, subject to certain assumptions, any increase or decrease
of C(t) is determined entirely by the gradient of the speed–curvature relationship at
zero curvature, V ′(0). If V ′(0) > 0, then dC/dt � 0; if V ′(0) < 0, then dC/dt � 0;
and if V ′(0) = 0, then C is a constant. If this remarkable conclusion should hold in
general, then global features of interfaces would be greatly simplified. Any evolution
resulting from the antidiffusive behaviour we have identified for any V ′(κ) < 0, would
be strictly limited by only the local properties of the speed–curvature relationship
near zero curvature. For example, if κ were uniformly negative to start with, it would
never be able to change sign if V ′(0) � 0 regardless of the variation of the function
V (κ) elsewhere. In view of the strong nature of the instabilities identified, such a
restriction seems unlikely to hold for general functions V (κ).

On the other hand, foremost amongst the assumptions leading to Sethian’s (1985,
1996) conclusion is the continuity of curvature. Other assumptions might possibly
be dispensable, but it is clear that the arguments contained in the derivation (4.4)
are easily violated if κ changes sign discontinuously with arclength.

Examples can be constructed that do not maintain Sethian’s (1985, 1996) predic-
tion, even for interfaces that initially do have continuous and twice differentiable cur-
vature. Consider the interface sketched in figure 2a and the propagation law sketched
in figure 2b. This law has a zero gradient at κ = 0 so that C should stay constant.
However, for negative curvatures κ < κ1 < 0, it has a constant propagation speed
V1. Around κ = 0, in the interval κ2 < κ < κ3 that straddles the origin, the speed
is V0 < V1. For larger values of κ we can (for example) take V to be increasing but
this makes no difference. The initial shape in figure 2a can be chosen to be almost
a polygon, having regions of high negative curvature (κ < κ1) and regions of nearly
zero curvature (κ2 < κ � 0) joined by any smoothly varying negative curvature.
Clearly, C = 2π initially. However, the regions of near-zero curvature propagate at
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Figure 2. (a) A propagating interface. (b) A possible speed–curvature relationship. Under these
conditions, the interface will undergo changes in the sign of curvature.

speeds lower than the regions of large, negative curvature. The curve can easily be
chosen such that this discrepancy in propagation speeds brings about an inversion
in curvature in arbitrarily short times, causing C to increase above 2π.

This amounts to a proof that the evolution cannot maintain the degree of smooth-
ness in curvature required for Sethian’s (1985, 1996) results to remain valid. More-
over, because any smooth curve can be approximated arbitrarily closely by another
smooth shape that approaches a high-order polygon, arbitrarily small, although still
smooth, disturbances to any initial shape can cause Sethian’s (1985, 1996) result to
be violated arbitrarily quickly. The actual evolution of total variation in any one
example must therefore depend on the nature of the speed–curvature law over much
more of its range than simply the origin.

It is likely that Sethian’s (1985, 1996) results would be maintained for strictly
monotonic speed–curvature laws, by which V ′(κ) remains either strictly positive or
strictly negative for all accessible curvatures κ. In other cases, the example above
shows that his conclusions are easily violated. In doing so, of course, the assumptions
underlying Sethian’s (1985, 1996) deduction must be violated and in particular it is
likely that curvature becomes discontinuous.

5. Discontinuous solutions: propagation without change of shape

The appearance of discontinuous solutions can be demonstrated by considering inter-
faces that propagate without change of shape. If an interface propagates in the y-
direction at a speed c and follows the path y = ct + v(x), then the shape of the
interface is determined by

c

(1 + v′2)1/2 = V

(
v′′

(1 + v′2)3/2

)
. (5.1)

Any solution can be characterized (modulo translations in x and y) by the initial
conditions v(0) = v′(0) = 0 and equation (5.1) makes it clear both that solutions
would then be symmetric about x = 0 and that V (v′′) = c at x = 0. Since v′2
increases away from v′ = 0, the second derivative v′′ must vary such that V decreases
away from x = 0.

In general, for the speed–curvature law of figure 1b, with Vmin < c < Vmax, there
are three possible solutions determined by the three intersections of the curve with
the line V = c, as sketched in figure 3a. By labelling these I, II and III from left to
right, the qualitative features of each of these solutions can be described as follows.
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Figure 3. (a) Intersections between the propagation law of figure 1 with the line V = c, leading
to three types of steadily propagating solution (shown uppermost). (b) Each of the different
qualitative shapes of steady solution v(x) that can arise.

Type I. These solutions have negative curvature, which increases negatively away
from their maximum point (where v′ = 0). They must be bounded above by a
semicircle of curvature equal to v′′(0) and so they have bounded support approaching
infinite negative curvature at their endpoints. Along the lines of the analysis in § 3,
these solutions would be stable to small-scale disturbances, since V ′(κ) > 0 for all
curvatures found along the curve.

Type II. These solutions have three alternative forms depending on whether c >
V (0), c < V (0) or c = V (0). In the latter case they are simply constant, v ≡ 0. These
curves are all unstable to small-scale disturbances, since V ′(κ) < 0. For c > V (0)
curvature is negative and increases towards zero away from a maximum value, so
that the solutions have unbounded support. For c < V (0) curvature is positive and
increasing, but because the curvature is bounded below by the value v′′(0) (and the
solution is therefore bounded below by a semicircle of that curvature), the solutions
have bounded support with curvature approaching 1/rmin at their endpoints.

Type III. These solutions have positive curvature, decreasing away from the min-
imum of v(x) where v′ = 0. However, because the curvature is bounded below by the
value 1/rmin, these solutions also have bounded support and approach a curvature
of 1/rmin at their endpoints. These solutions are stable to small-scale disturbances,
since V ′(κ) > 0.
Each type of solution is sketched qualitatively in figure 3b.

We can note that if V (κ) tends to zero as κ → −∞, and to infinity as κ → ∞,
the system cannot dynamically sustain infinite curvatures (that is, discontinuities in
direction, or cusps). An excessively sharp positive curvature diminishes through prop-
agating forwards quickly and an excessively negative curvature diminishes through
being caught up by surrounding faster propagation. This being so, the tangent vector
ŝ must be continuous even though the curvature might be discontinuous.
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II III III IIII III I

y − ct

x
II III III

Figure 4. An amalgamation of type I, II and III solutions providing one example of an interface of
fixed form propagating at speed c. Different types of solution can be connected with continuous
slope on arbitrarily fine scales.

In the context of solutions propagating with constant form this means that quite
complicated overall solutions can be constructed out of suitable translations of type I,
II and III solutions for a given value of c. Any suitable portion of one type of solution
needs only to be joined together with a suitable portion of the next at a point where
both solutions share the same slope. This portion can in turn be joined to another
in the same manner. At points where different types of solution meet, each has the
same normal propagation speed and normal direction vector n̂, so that the overall
solution is therefore consistent. It can be noted that there is no lower limit to the size
of the interval occupied by each successive solution so that solutions can be joined
together in an arbitrarily fine structure.

Other forms of behaviour become possible if V (κ) remains finite and below Vmax in
the limit of infinite positive curvature. Cusps can then be sustained above a certain
speed c. Likewise if V (κ) were to increase towards c in a suitable manner as κ → −∞,
sharp leading cusps could be generated. Indeed if the variation of the function V (κ)
were to be modified to generate more or fewer intersections with V = c, or if the
locations of the maxima or minima were to be changed, then other types of solution
would arise in the same kind of way. There are clearly many alternative scenarios
that could mostly be examined in a similar manner.

A sketch of one possible array of type I, II and III solutions is shown in figure 4.
A composite solution of this form can be regarded as having separated into different
possible ‘phases’ where each type of solution represents a different phase. Within
constraints set by the nature of the propagation law V (κ) that controls the system,
such a separation would permit the interface to propagate at speeds that are different
from the propagation speed V (0) of a flat interface. Interestingly, because ‘phases’
can be joined together on arbitrarily fine scales, it is possible to design composite
solutions that are arbitrarily close to a flat interface but which propagate at a quite
different speed.

6. Concluding remarks

It is clear that non-monotonicity in the speed–curvature relationship is responsible
for a wide range of phenomena, including the fact that antidiffusive instability, for
V ′(κ) < 0, may then be restricted only to a window of curvatures, giving rise to a
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surprising degree of regularization. Questions of ill-posedness emerge as antidiffusive
features appear. We have seen that non-monotonicity can in some circumstances
provide a complete regularization of the linearized problem, although the system is
also very sensitive to the presence of ‘noise’ or more deterministic forms of forcing.
On the other hand, it has been demonstrated that discontinuities in curvature are
likely to arise naturally, rendering irrelevant results that are based on assuming
continuity of curvature. Multiple, steadily propagating forms of solution are found
that can coexist on different parts of the same interface, satisfying suitable conditions
of consistency where the solutions meet. This resembles a form of ‘phase separation’
in curvature space, on scales that can be arbitrarily fine.

While such a steadily propagating ‘patchwork’ solution can be constructed theo-
retically for a given propagation law V (κ) and speed c, it represents only one of a
wide class of possible solutions. Many more questions remain. It is not at all clear,
for example, that a steady solution of this type would generally evolve from small
perturbations in an unstable flat interface, and if it did so what value of c would
be selected,† or how finely different phases might be distributed. It is much more
likely that any such solution is itself unstable in a variety of ways and a far wider
range of dynamical behaviour would then occur. Different ‘phases’ of different speed
c might interact dynamically, probably involving coalescence towards larger scales,
while perturbations to the antidiffusively unstable phase II could break these parts
of the solution up into yet finer distributions of phases. Because normal propagation
tends to make curvatures grow in the positive direction, negative curvatures are likely
to evolve towards the antidiffusively unstable range if they are not already within
it. The presence of any noise and its nature (especially its spectrum) are also very
likely to play a major part in determining the dynamics.

The system is certainly strongly nonlinear and its general dynamics are still
unknown. A way forward that is currently being investigated is the use of numerical
simulations involving small levels of high-order regularization in the form

Rt · n̂ = V (κ) − δ2∇2κ, (6.1)

which reduces to the model (2.1) if δ = 0. As discussed in the appendix, this equation
can be viewed as both a version of the Kuramoto–Sivashinsky equation, modified to
include general nonlinear dependence of propagation speed on curvature, and as a
generalization of the Cahn–Hilliard equation that involves additional nonlinearity
due to normal propagation. The latter connection reinforces the notion of phase sep-
aration but it is not clear how strongly normal propagation would modify results.
This paper has explored a number of avenues that are available for understand-
ing the implications of non-monotonicity in a speed–curvature relationship through
analytical investigation alone.
The authors are grateful to Oliver Kerr, Michael Berry, Stan Osher and Charlie Elliott for useful
discussions and suggestions.

Appendix A. Links with the Kuramoto–Sivashinsky
and Cahn–Hilliard equations

Approximating the behaviour of small-amplitude disturbances from a flat constant-
density flame (lean in a suitably light reactant) propagating upwards in the form

† The value c = Vmax would seem to have some special significance.
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y = ct + φ(x, t), the Kuramoto–Sivashinsky equation has the two alternative forms
(Sivashinsky 1977; Frankel 1991)

φt − 1
2cφ

2
x = −γφxx − δ2φxxxx,

or Rt · n̂ − c = −γκ − δ2κss.

}
(A 1)

Both forms are equivalent asymptotically to second order for small values of φx if
the interface approaches a flat interface propagating upwards at speed c. However,
the latter form could be propagating in any direction (Frankel 1991), and for δ = 0
it is equivalent to the model (2.1) combined with the linearly antidiffusive speed–
curvature law V (κ) = c − γκ.

A natural generalization of the Kuramoto–Sivashinsky equation that can take
nonlinear and indeed non-monotonic curvature dependence into account is therefore

Rt · n̂ = V (κ) − δ2κss, (A 2)

reducing to the model (2.1) when δ = 0, and having the further three-dimensional
extension (6.1) for δ > 0. In terms of small deviations of the flame shape φ(x, t) =
y − ct from a flat interface propagating upwards at speed c as before, this equation
becomes

φt − 1
2cφ

2
x = V (φxx) − c − δ2φxxxx, (A 3)

where the term −1
2cφ

2
x is a weakly nonlinear representation of normal propagation,

coming from the exact form of normal propagation Rt · n̂ = (c + φt)/(1 + φ2
x)1/2

through binomial expansion of the denominator. Since κ = φxx to leading order, this
equation can also be written as

κt = (V (κ) + 1
2cφ

2
x)xx − δ2κxxxx, (A 4)

which is a generalization of the Cahn–Hilliard equation in which the additional non-
linearity 1

2c(φ
2
x)xx, or c(κ2 + φxκx), represents the leading-order effect of normal

propagation at speed c. Using equation (4.2) the effects of normal propagation can
be included without approximation, in the coordinate-free version

κt − Rt · ŝκs = V κ2 + (V (κ))ss − δ2κssss. (A 5)

Without the extra terms describing normal propagation, Rt · ŝκs and V κ2, the
Cahn–Hilliard equation models phase separation between values of κ where V (κ)
has maximum positive slope (Bai et al . 1995). This connection therefore establishes
a stronger link with the notion of separation into different ‘phases’ of curvature,
modified by the effects of normal propagation. The term Rt · ŝκs of (A 5) simply
describes reparametrization of the surface as the arclength variable s changes with
time. Of more significance is the term V κ2, representing the effect on curvature of
normal propagation, as determined by Huygens’s principle. Setting the left-hand side
of (A 5) to zero and letting δ → 0 provides a nonlinear ordinary differential equation
describing any ‘phase’ of curvature

V ′(κ)κss + V ′′(κ)κ2
s + V (κ)κ2 = 0. (A 6)

If V (κ) = c, where κs = 0, this equation becomes a coordinate-free generalization of
equation (5.1).
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In some sense δ is a measure of the ‘thickness’ of a flame and the term −δ2κss

prevents the growth of disturbances of wavelength shorter than O(δ). For example,
the small-disturbance equation (3.1) can then be generalized and written in the form

ut − 1
2V (κ)u2

s = V ′(κ)(uss + κ2u) − δ2ussss (A 7)

for non-zero δ and weak normal-propagation nonlinearity −1
2V (κ)u2

s. The final term
then has exactly the same regularizing effect as it does in the Kuramoto–Sivashinsky
equation (A 1), making the problem well-posed for any propagation law V (κ) and any
initial state, both with respect to initial conditions and the addition of ‘noise’ (struc-
tural well-posedness). Indeed, equation (A 7) is another ‘local’ form of the Kuramoto–
Sivashinsky equation (A 1) describing small-scale perturbations to any propagating
interface and, in particular, their stabilization at high enough wavenumbers even
when V ′(κ) < 0 (Sivashinsky 1977).

Solutions of the type sketched in figure 4 can be interpreted as outer asymptotic
solutions of equation (A 2) in the limit as δ → 0. Inner asymptotic boundary layers
would form to smooth out discontinuous jumps in curvature over arclength changes of
the order of δ. Seen in this light, the analogy to phase separation in curvature space
is even more pertinent, with type I and type III phases being locally comparable
to diffusively stabilized Kuramoto–Sivashinsky evolutions (having γ = −V ′(κ) < 0),
while type II phases pick up some of the linearly antidiffusive dynamics of Kuramoto–
Sivashinsky equations, in which γ = −V ′(κ) > 0 locally.
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